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Objective: Suicidal behavior is heritable and is a major cause 
of death worldwide. Two large-scale genome-wide asso-
ciation studies (GWASs) recently discovered and cross- 
validated genome-wide significant (GWS) loci for suicide 
attempt (SA). The present study leveraged the genetic co-
horts from both studies to conduct the largest GWAS meta- 
analysis of SA to date. Multi-ancestry and admixture-specific 
meta-analyses were conducted within groups of significant 
African, East Asian, and European ancestry admixtures.

Methods: This study comprised 22 cohorts, including 43,871 
SA cases and 915,025 ancestry-matched controls. Analytical 
methods across multi-ancestry and individual ancestry ad-
mixtures included inverse variance-weighted fixed-effects 
meta-analyses, followed by gene, gene-set, tissue-set, and 
drug-target enrichment, as well as summary-data-based 
Mendelian randomization with brain expression quantitative 
trait loci data, phenome-wide genetic correlation, and ge-
netic causal proportion analyses.

Results: Multi-ancestry and European ancestry admixture 
GWAS meta-analyses identified 12 risk loci at p values 

<5×10–8. These loci were mostly intergenic and implicated 
DRD2, SLC6A9, FURIN, NLGN1, SOX5, PDE4B, and CACNG2. 
The multi-ancestry SNP-based heritability estimate of SA 
was 5.7% on the liability scale (SE=0.003, p=5.7×10–80). 
Significant brain tissue gene expression and drug set en-
richment were observed. There was shared genetic variation 
of SA with attention deficit hyperactivity disorder, smoking, 
and risk tolerance after conditioning SA on both major de-
pressive disorder and posttraumatic stress disorder. Genetic 
causal proportion analyses implicated shared genetic risk for 
specific health factors.

Conclusions: This multi-ancestry analysis of suicide attempt 
identified several loci contributing to risk and establishes 
significant shared genetic covariation with clinical pheno-
types. These findings provide insight into genetic factors 
associated with suicide attempt across ancestry admixture 
populations, in veteran and civilian populations, and in at-
tempt versus death.

Am J Psychiatry 2023; 180:723–738; doi: 10.1176/appi.ajp.21121266

Suicide accounted for more than 700,000 deaths worldwide 
in 2019 and was the fourth leading cause of death among 15- 
to 29-year-olds (1). Suicide attempt is even more common 
(2–4). Suicide attempt is strongly associated with psychiatric 
conditions, poor quality of life, traumatic experiences, and 
social and economic burden (1) and is the single strongest 
predictor of future suicide death (5).

Heritability estimates for suicidal thoughts and behav-
iors from twin and family studies range from 30% to 55% (6), 
and recent large-scale genome-wide association studies 
(GWASs) have yielded promising and replicable results. The 
International Suicide Genetics Consortium (ISGC) (total 
N=549,743; 29,782 cases) identified two loci reaching 
genome-wide significance for suicide attempt in individuals 
of primarily European ancestry admixtures, on chromo-
somes 6 (index SNP: rs71557378; p=1.97×10−8) and 7 (index 

SNP: rs62474683; p=1.91×10−10) (7). The intergenic locus 
on chromosome 7 remained significant after conditioning on 
psychiatric disorders and was independently replicated 
(p=3.27×10−3) (8) in the Million Veteran Program (MVP) 
cohort (9). The MVP cohort GWAS of suicide attempt (total 
N=409,153; 14,089 cases) resulted in two genome-wide 
significant multi-ancestry loci, on chromosomes 20 (index 
SNP: rs56817213; p=3.64×10−9) and 1 (index SNP: rs72730526; 
p=3.69×10−8) (8). A top signal identified at the dopamine 
receptor D2 locus (p=1.77×10−7) also showed moderate 
association in the ISGC GWAS (p=7.97×10−4) (7).

These studies established the complexity of the common 
variant genetic architecture of suicide attempt and dem-
onstrated the critical role of sample size for discovering 
novel, replicable risk loci for suicide phenotypes through 
GWASs (10). Together, these GWASs suggested that larger 
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studies will identify additional genomic risk loci and refine 
genetic risk metrics.

The objective of the present study was to conduct a meta- 
analysis of the ISGC and MVP studies (total N=958,896; 
43,871 suicide attempt and suicide death cases). Moreover, 
there is considerable need to increase the diversity and gen-
eralizability of GWAS data (11). Combining all ISGC and MVP 
cohorts allowed for the largest GWAS meta-analyses of Eu-
ropean, African, and East Asian ancestry admixtures to date. 
We also tested for gene set enrichment and functional follow- 
up specific to all included ancestral admixture populations.

METHODS

GWAS Cohorts and Phenotype Ascertainment
The International Suicide Genetics Consortium (ISGC) cohort.
The ISGC analyses included 29,782 cases of suicide attempt 
(SA; defined as self-injurious behaviors with an intent to die) 
and/or suicide death and 519,961 control subjects from 18 
cohorts (15 of SAs, two of suicide deaths, and one of both), 12 
of which were ascertained clinically for the purpose of 
studying psychiatric disorders. Details about the specific 
cohorts have been provided previously (7), and cohort ref-
erences and ascertainment methods are summarized in 
Table S1 in the online supplement. Twelve SA cohorts 
ascertained information on SA via in-person structured 
psychiatric interviews conducted by trained clinicians/re-
searchers, two SA cohorts used self-report, and two SA 
cohorts used ICD codes or hospital records. All interviews 
and self-report items asked explicitly about SA rather than 
self-harm (which would also include nonsuicidal self- 
injury). ICD codes were coupled with information from 
emergency department settings and information on reason 
for contact and attempt methods that were mined from 
physician notes, in order to maximize evidence that suicidal 
intent was present. For the cohorts in which interviews or 
self-report were used to ascertain SA information, the SA 
was nonfatal. In an additional two cohorts, cases of suicide 
death were explicitly ascertained. The majority of suicide 
death cases were ascertained from the Utah Office of the 
Medical Examiner (hereafter “Utah”; N=4,692). In these 
cases, suicide cause-of-death determination results from a 
detailed investigation of the scene of the death and cir-
cumstances of death, determination of medical conditions by 
full autopsy, review of medical and other public records 
concerning the case, interviews with survivors, and standard 
toxicology workups (12). Suicide determination is tradi-
tionally conservative given its impact on surviving relatives. 
In the 746 suicide deaths from Kobe, Japan, autopsies were 
performed and cause of death was determined through 
discussion with the Medical Examiner’s Office and the Di-
vision of Legal Medicine at the Kobe University Graduate 
School of Medicine. The Columbia University cohort of both 
SA and suicide death included 317 suicide deaths that were 
determined by psychological autopsy and the coroner or 
medical examiner. A psychological autopsy is a method of 

determining the psychological factors that may have con-
tributed to a death, considering additional information from 
family members, friends, acquaintances, medical records, 
and other relevant documents to better characterize a death 
of uncertain cause, including suspected suicides.

The Million Veteran Program cohort. MVP recruitment and 
study procedures have been described previously (8). Par-
ticipants provided a blood sample, consented to genetic 
analyses and the linking of their genetic information to the 
VA’s electronic health record system (EHR), and completed 
two optional surveys (9, 13). SA was defined as an act of 
deliberate self-harm with the intent to cause death that 
occurred at any point over the lifetime. Briefly, cases were 
defined as veterans with a documented history of SA in the EHR 
(N=14,089) and controls were defined as veterans with no 
documented history of suicidal thoughts or behaviors in the 
EHR (N=395,064). VA EHR sources were utilized to create an 
SA phenotype using 1) diagnostic codes for intentional self- 
harm, 2) suicidal behavior reports from the VA’s Suicide 
Prevention Applications Network database, and 3) mental 
health survey responses from the VA’s Mental Health Assistant 
database indicating a history of attempting suicide. Veterans 
who had a history of suicidal ideation but no SA were excluded 
from analysis. For all ISGC and MVP cohorts, it remains un-
determined which individuals with SA may have died later by 
suicide. Details of sample sizes by genetic ancestry admixture 
for the ISGC and MVP cohorts are presented in Table 1.

Genotyping, Quality Control, and Imputation
Details of genotyping, quality control (QC), and imputation 
for the ISGC and MVP data sets have been described pre-
viously (7, 8). In the ISGC analyses, genotyping was per-
formed locally by each of the research teams, using 
comparable procedures (8) (details per cohort are available 
in Table S1 in the online supplement). Standard parameters 
were used to retain individuals and SNPs after quality 
control for missingness, relatedness, and Hardy-Weinberg 
equilibrium. Genetic ancestry was defined by the contrib-
uting cohorts, and all ascertainment, QC, and analysis details 
of the ISGC and MVP cohorts are provided in Table S1 in the 
online supplement. Imputation was performed using the 
largest available ancestrally matched reference panels, ei-
ther from the 1000 Genomes Project or the Haplotype 
Reference Consortium. We confirmed the comparability of 
imputation across the cohorts by comparing the final set of 
SNPs in the meta-analysis, including the number of cohorts 
in which they were present, and the INFO scores across 
cohorts and within ancestral admixture groups. Sample 
overlap and/or cryptic relatedness across cohorts was 
assessed and corrected for using the meta-analytic tools 
described below. Eight of the cohorts had high control: 
case ratios (using an arbitrary cutoff of >15:1). In these 
cases, the linkage disequilibrium (LD) score regression 
(LDSC) (14) attenuation ratio statistics were examined for 
evidence of population stratification or uncontrolled type 
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I error in the cohort. For any evidence of inflation, the 
intercept was used to adjust the standard error of the 
summary statistics.

GWAS Meta-Analysis of Suicide Attempt
For both the ISGC and MVP cohorts, the initial GWAS 
analysis was conducted within genetic ancestral admixtures. 
For the ISGC meta-analysis, GWASs were conducted within 
study and genetic ancestral admixtures, covarying for at least 
10 principal components of genetic ancestry, genomic re-
latedness matrices, or factors capturing site of recruitment 
or genotyping batch, as required (7). For the MVP cohort, 
ancestry was assigned for four mutually exclusive ancestral 
groupings utilizing a previously defined approach harmo-
nizing genetic ancestry admixtures and self-identified an-
cestry groupings (HARE) (15). Subsequent MVP GWAS 
analyses were performed within ancestral admixtures using 
PLINK2 (16), covarying for genetic ancestry principal 
components, age, and sex.

A multi-ancestry meta-analysis of SA GWAS summary 
statistics was conducted using an inverse variance-weighted 
fixed-effects model (standard error) in METAL (17), 

assuming shared risk effects across ancestry admixtures. 
SNPs with a mean weighted minor allele frequency of <1%, a 
mean weighted imputation INFO score <0.6, or SNPs 
present in <80% of the total effective sample size were 
removed to ensure adequate statistical power at every variant 
included. Ancestry admixture-specific GWAS meta-analyses 
were conducted with cohorts of significant European (EUR), 
African (AFR), and East Asian (EAS) ancestry admixtures 
using the same procedures. Only one primary ancestral 
admixture population, Hispanic/Latino (LAT), was limited 
to a single cohort and thus could not be meta-analyzed. 
Inflation of test statistics due to polygenicity or cryptic 
relatedness was assessed using the LDSC attenuation 
ratio ([LDSC intercept−1]/[mean of association chi-square 
statistics−1]). Resulting genome-wide significant (GWS) 
loci were defined as those with p<5×10−8 with LD r2>0.1, 
within a 3,000-kb window, based on the structure of the 
Haplotype Reference Consortium (HRC) EUR reference 
panel for the multi-ancestry meta-analysis, or the HRC 
ancestry-appropriate reference panel otherwise. GWS loci 
for SA were examined for heterogeneity across cohorts via 
the I2 inconsistency metric and forest plots.

TABLE 1. Summary of GWAS cohorts and primary ancestry admixturesa

Cohort Suicide Attempt/Death Ascertainment Cases Controls

EUR
Army STARRS Attempt Military 670 10,637
Australian Genetics of Depression Study Attempt Psychiatric 2,792 20,193
Columbia University Attempt and death Psychiatric 577 1,233
GISS Attempt Psychiatric 660 660
German Borderline Genomics Consortium Attempt Psychiatric 481 1,653
iPSYCH Attempt Population 7,003 52,227
Janssen Attempt Psychiatric 255 1,684
Million Veteran Program Attempt Military 9,196 287,370
PGC Bipolar Disorder Attempt Psychiatric 3,214 17,642
PGC Eating Disorders Attempt Psychiatric 170 5,070
PGC Major Depressive Disorder Attempt Psychiatric 1,528 16,626
PGC Schizophrenia Attempt Psychiatric 1,640 7,112
UK Biobank Attempt Population 2,433 334,766
University of Utah Death Population 4,692 20,702
Yale-Penn Attempt Psychiatric 475 1,817
Total 35,786 779,392

EAS
CONVERGE Consortium Attempt Psychiatric 1,148 6,515
Kobe University Death Population 746 14,049
Million Veteran Program Attempt Military 115 4,082
Total 2,009 24,646

AFR
Grady Trauma Project Attempt General medical 669 4,473
Million Veteran Program Attempt Military 3,507 74,306
Yale-Penn Attempt Psychiatric 629 2,902
Total 4,805 81,681

LAT
Million Veteran Program Attempt Military 1,271 29,306

Multi-ancestry total 43,871 915,025

a AFR=African; CONVERGE=China, Oxford, and VCU Experimental Research on Genetic Epidemiology; EAS=East Asian; EUR=European; GISS=Genetic In-
vestigation of Suicide Attempt and Suicide; iPSYCH=Lundbeck Foundation Initiative for Integrative Psychiatric Research; LAT=Hispanic/Latino; 
PGC=Psychiatric Genomics Consortium; SA=suicide attempt; STARRS=Study to Assess Risk and Resilience in Servicemembers.

726 ajp.psychiatryonline.org Am J Psychiatry 180:10, October 2023

GWAS META-ANALYSIS OF SUICIDE ATTEMPT 

http://ajp.psychiatryonline.org


Estimation of Heritability and Genetic Association 
With Other Disorders
LDSC (14) and covariate-adjusted LDSC (cov-LDSC) (18) 
methods were used to estimate the phenotypic variance 
in SA explained by common SNPs (SNP-based heritability, 
h2

SNP) from the GWAS meta-analysis summary statistics. 
LD scores from the 1000 Genomes Project (EUR and EAS) 
were used to derive h2

SNP for the multi-ancestry GWAS 
meta-analysis and meta-analyses of European and East Asian 
ancestry admixtures. To obtain acceptable attenuation ratios 
for Hispanic/Latino and African ancestry admixture h2

SNP 
estimates, we used covariate-adjusted AMR LD scores (AMR 
referring to the “Ad Mixed American” super population 
code) from Pan UK Biobank (https://pan.ukbb.broadin-
stitute.org) and AA LD scores (AA referring to a U.S. pop-
ulation of African ancestry admixtures) from gnomAD v2.1.1 
(19). h2

SNP was calculated on the liability scale assuming a 
lifetime prevalence of 2% for SA in the general population 
(the middle of the range reported worldwide) (20). The 
default script of LDSC was used to exclude SNPs with minor 
allele frequency (MAF) <1% and INFO <0.9 and also to 
restrict variants to the list of approximately 1.2 million 
HAPMAP SNPs that are typically well imputed across data 
sets. h2 estimates remained stable across >2% and >5% 
MAF thresholds. The genetic correlation attributable to 
genome-wide SNPs (rG) was estimated between the an-
cestral admixture groups using the Popcorn package (21), and 
with a range of psychiatric disorders using LDSC and the 
largest available discovery GWAS meta-analysis summary 
statistics (22–33). The latter analyses were confined to Eu-
ropean ancestry admixtures for consistency with the dis-
covery summary data. Tests were Bonferroni corrected, 
adjusting for up to 18 phenotypes hypothesized to be as-
sociated with SA based on previous epidemiological asso-
ciation or previous evidence of genetic association in LD 
Hub (34). Previous LD Hub analyses in ISGC were pre- 
categorized manually into risk factor groups relevant to SA 
(5, 35, 36): autoimmune disease, neurologic disease, heart 
disease, hypertension, diabetes, kidney disease, cancer, al-
cohol use, smoking, pain, psychiatric, sleep, life stressors, 
socioeconomic, and education/cognition. Values for rG of SA 
in ISGC and MVP in this study were calculated using LDSC, 
and references for the discovery GWAS are listed in Table S2 
in the online supplement. Differences in rG across other 
phenotypes using EUR GWAS meta-analyses were tested as a 
deviation from 0, using the block jackknife method imple-
mented in LDSC (37). To examine phenome-wide partial 
genetic causality, the Complex-Traits Genetics Virtual Lab 
(CTG-VL) (38) was used to conduct false discovery rate– 
corrected genetic causal proportion (GCP) analyses on the 
EUR summary data.

Conditioning Suicide Attempt on Major Depressive 
Disorder and PTSD
The results of the EUR GWAS SA meta-analysis were 
conditioned on genetic risks for major depressive disorder 

(MDD) (27) and posttraumatic stress disorder (PTSD) (32) in 
secondary analyses, to examine genetic associations both 
shared with and unique to suicide risk. Results were con-
ditioned because MDD and PTSD are both highly comorbid 
with SA, and because PTSD is particularly prevalent in 
military veteran populations (i.e., MVP). Conditioning was 
conducted using multitrait-based conditional and joint 
analysis using GWAS summary data (mtCOJO) (39), 
implemented in the GCTA software program (40). mtCOJO 
estimates the effect size of a SNP on an outcome trait (e.g., 
SA) conditioned on one or more exposure traits (e.g., MDD). 
GWS SNPs for the exposure are used as instruments to 
estimate the effect of the exposure on the outcome, and this 
effect is used to perform genome-wide conditioning, yielding 
conditioned effect sizes and p values for the outcome trait. 
The EUR-only SA GWAS summary statistics were used as 
the outcome trait, because mtCOJO requires GWAS sum-
mary statistics for the exposure trait, which were derived 
from EUR ancestry discovery GWAS. To select independent 
SNPs as instruments, we selected those that were more than 1 
megabase apart or had an LD r2 <0.05 based on the 1000 
Genomes Project Phase 3 EUR reference panel (41). mtCOJO 
is robust to sample overlap between the GWASs of the ex-
posure and outcome. In this analysis, statistical power to 
detect genetic associations at individual SNPs was reduced 
relative to the unconditioned analysis by the additional 
model parameters, but the genetic correlations using the 
conditioned summary statistics provide valuable insights 
into the relevant risk factors for SA over and above those 
related to MDD and PTSD.

Gene, Gene Pathway, and Tissue Enrichment Analyses
Enrichment analyses of the GWAS results were performed to 
probe genes, biological pathways, and tissues implicated in 
SA, using the multi-ancestry and ancestry admixture- 
specific GWAS results. The p values quantifying the de-
gree of association of genes and gene sets with SA were 
calculated using MAGMA v1.08 (42), implemented in FUMA 
v1.3.7 (43). Input SNPs were mapped to 18,627 protein- 
coding genes. Genome-wide significance was defined as a 
p value <2.68×10−6 (0.05/18,627). Curated gene sets that 
included at least 10 genes from MSigDB v7.0 were tested for 
association with SA. Competitive gene-set tests were con-
ducted to correct for gene size, variant density, and LD within 
and between genes. Tissue-set enrichment analyses were 
also performed using MAGMA implemented in FUMA, to 
test for enrichment of association signal in genes expressed 
in 54 tissue types from GTEx v8 (44) (Bonferroni-corrected 
p threshold, 9.26×10−4).

Drug Target Enrichment Analyses
Additional gene-set enrichment analyses of both the multi- 
ancestry and EUR GWAS meta-analysis results were per-
formed, restricted to genes targeted by drugs, in order to 
investigate putative relationships of suicide attempt with 
specific drug types. These analyses do not identify causal 
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relationships but may implicate genes relevant to pharma-
cotherapy. This approach has been described previously 
(45). Gene-level and gene-set analyses were performed in 
MAGMA v1.08. Gene boundaries were defined using build 37 
reference data from the National Center for Biotechnology 
Information, available on the MAGMA website (https:// 
ctg.cncr.nl/software/magma), extended 35 kb upstream and 
10 kb downstream to increase the likelihood of including 
regulatory regions outside of the transcribed region. Gene- 
level association statistics were defined as the aggregate of 
the mean and the lowest variant-level p value within the gene 
boundary, converted to a Z value. Gene sets were defined 
comprising the targets of each drug in the Drug-Gene In-
teraction Database (DGIdb) v.2 (46) and in the Psychoactive 
Drug Screening Ki Database (47), both downloaded in June 
2016 (45). Analyses were performed using competitive gene- 
set analyses in MAGMA.

Results from the drug-set analysis were then grouped 
according to the Anatomical Therapeutic Chemical (ATC) 
class of the drug (45). Only drug classes containing at least 10 
valid drug gene sets within them were analyzed, and drug- 
class analysis was performed using enrichment curves. All 
drug gene sets were ranked by their association in the drug- 
set analysis, and then for a given drug class, an enrichment 
curve was drawn scoring a “hit” if the drug gene set was 
within the class, or a “miss” if it was outside of the class. 
The area under the curve was calculated, and a p value for 
this was calculated as the Wilcoxon Mann-Whitney test 
comparing drug gene sets within the class to drug gene 
sets outside the class (45). Bonferroni-corrected signif-
icance thresholds of p<5.79×10−5 and p<4.35×10−4 

were used for the drug-set and drug-class analyses, re-
spectively, accounting for 863 drug sets and 115 drug 
classes.

Summary Data-Based Mendelian Randomization
Summary data-based Mendelian randomization (SMR) 
(v1.03) (48, 49) was applied to detect GWAS signals that 
colocalize with expression quantitative trait loci (eQTLs), in 
order to investigate putative causal relationships between 
SNPs and SA via gene expression. SMR was performed using 
eQTL summary statistics from the MetaBrain consortium 
(50), a cortex-derived eQTL data set consisting of 2,970 EUR 
cortex samples. The analysis was conducted using the EUR- 
only GWAS meta-analysis results, for consistency with the 
eQTL data. Brain eQTL data from comparable sample sizes 
in other ancestral groups are not currently available. 
SMR analysis was limited to transcripts with at least one 
significant cis-eQTL (p<5×10−8) in the data set (of 8,753 
in MetaBrain). The Bonferroni-corrected significance 
threshold for the SMR analysis was p<5.71×10−6, and the 
significance threshold for the HEIDI test (heterogeneity 
in dependent instruments) (51) was p≥0.01. A nonsig-
nificant HEIDI test suggests a direct causal role of the 
SA-associated SNPs on gene expression, rather than a 
pleiotropic effect.

Polygenic Risk Scoring
Polygenic risk scores (PRSs) for SA were tested for associ-
ation with SA compared with controls in six target cohorts: 
Psychiatric Genomics Consortium Major Depressive Dis-
order, Bipolar Disorder, and Schizophrenia (all European 
ancestry admixtures); CONVERGE (East Asian ancestry 
admixtures); and Yale-Penn and Grady Trauma Project 
cohorts (both primarily African ancestry admixtures, located 
in the United States). The SA GWAS meta-analysis was 
repeated, excluding each cohort in turn, to create inde-
pendent discovery data sets. PRSs were generated using 
PRS-CS (51), which uses a Bayesian regression framework to 
place continuous shrinkage priors on the effect sizes of SNPs 
in the PRSs, adaptive to the strength of their association 
signal in the discovery GWAS and the LD structure from an 
external reference panel. The 1000 Genomes EUR, EAS, or 
AFR reference panels (41) were used to estimate LD between 
SNPs, as appropriate for each target cohort. PLINK v1.9 (16) 
was used to weight SNPs by their effect sizes, calculated 
using PRS-CS, and to sum all SNPs into PRSs for each in-
dividual in the target cohorts. PRSs were tested for associ-
ation with case-versus-control status in the target cohort 
using a logistic regression model including covariates as per 
the GWAS. The amount of phenotypic variance explained by 
the PRS (R2) was calculated on the liability scale, assuming a 
lifetime prevalence of 2% for SA in the general population 
(20). The Bonferroni-corrected significance threshold, 
adjusting for six tests, was p<0.008.

RESULTS

Significant Shared Genetic Architecture of SA Between 
Civilian (ISGC) and Military (MVP) Populations
The multi-ancestry GWAS included 43,871 cases and 915,025 
controls from 22 cohorts (Table 1). Cases were of predom-
inantly European ancestry admixtures (EUR, 81%), with 11% 
of cases with significant African ancestry admixtures located 
in the United States (AFR), 5% with East Asian ancestry 
admixtures (EAS), and 3% with Hispanic/Latino ancestry 
admixtures located in the United States (LAT). Case defi-
nition was lifetime SA, with ;13% of all cases having died by 
suicide. Additional information on study characteristics and 
ascertainment methods is presented in Table S1 in the online 
supplement.

Cohorts across ISGC and MVP differed with respect to 
ascertainment, with ISGC being largely civilian and MVP 
being military (Table S1A). However, examination of the 
genetic correlation of EUR GWAS meta-analyses for ISGC 
and MVP (rG=0.81, SE=0.091, p=2.85×10−19) indicated 
consistency of common-variant genetic architecture across 
these meta-analyses. Results from both fixed and meta- 
regression models were comparable in the multi-ancestry 
and EUR GWAS meta-analyses (all GWS effect size corre-
lations >0.99), indicating that ancestry and cohort ascer-
tainment were unlikely to confound observed genetic effects 
(Table S1B).
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12 GWS Loci Identified by GWAS Meta-Analysis of SA 
Across and Within Ancestries
The multi-ancestry GWAS meta-analysis identified eight 
GWS loci (p<5×10−8) (Figure 1). The h2

SNP of SA was 
significant at 5.7% (SE=0.003, p=5.70×10−80) on the lia-
bility scale assuming an SA population prevalence of 2%. The 
cov-LDSC intercept was 1.04 (SE=0.01, p=1.59×10−5), and 
the attenuation ratio was 0.13 (SE=0.03), indicating that the 
majority of inflation of GWAS test statistics is likely due to 
polygenicity (see Figure S1 in the online supplement).

The locus most strongly associated with SA was in an 
intergenic region on chromosome 7 (index SNP rs62474683 
A allele, odds ratio=1.05, 95% CI=1.04–1.07, p=8.72×10−12; 
frequency in cases, 0.57; frequency in controls, 0.56; a forest 
plot is provided in Figure S2 in the online supplement). At 
other GWS loci, index SNPs were intronic in the SLC6A9, 
DRD2, HS6ST3, and FURIN genes (Table 2; see Table S1B in 
the online supplement for additional summary data on all 
GWS loci). On chromosome 3, a GWS SNP localized to the 5: 
untranslated region of the NLGN1 gene, although the index 
SNP lacked neighboring SNPs in LD. There was no evidence 
of heterogeneity of effects across cohorts for any GWS locus 
according to I2 heterogeneity indices (see Table S1B in the 
online supplement). Forest plots for GWS loci are provided 
in Figures S2–S9 in the online supplement.

The EUR GWAS meta-analysis h2
SNP was estimated at 

7.0% (SE=0.4%) and identified four additional GWS loci 
(Table 2; see also Figure S10 and forest plots in Figures S11–14 
in the online supplement), composed of mostly intergenic 
index SNPs. The nearest genes were PDE4B, OTX2-AS1, 
CACNG2, and one locus was in the major histocompatibility 
complex. GWAS meta-analyses in AFR (h2

SNP=9.8%, 
SE=1.8%) and EAS (h2

SNP=9.8%, SE=4.5%) produced no 
GWS loci. The LAT SA h2

SNP (from the MVP GWAS) was 
estimated at 10.0% (SE=6.5%). Regional plots of the 12 GWS 
risk loci across all meta-analyses are presented in Figures 
S15–S26 in the online supplement. Mapped genes from the 
top loci in multi-ancestry and ancestry admixture-specific 
meta-analyses are presented in Tables S3–S6 in the online 
supplement. Summary statistics from these GWASs are 
available through the Psychiatric Genomics Consortium data 
access portal.

Genetic Correlations of SA Across Ancestry GWASs
The genetic correlations of SA across each of the ancestral 
groupings were attenuated, with estimated rG values be-
tween 0.064 (SE=0.574) (EAS with LAT) and 0.997 
(SE=0.537) (EUR with LAT); Popcorn rG results are pro-
vided in Table S7 in the online supplement. Individual cohort 
GWASs were variably powered to estimate genetic cor-
relation estimates with the other cohorts. LDSC estimates 
across all individual GWASs are presented in Table S8 in 
the online supplement, although cov-LDSC h2

SNP and 
Popcorn rG values in Table S7 in the online supplement are 
the preferred sources for statistics involving ancestry 
admixtures.

Enrichment of SA GWS Loci for Brain-Expressed Genes 
and Overlap With Previous Genetic Associations to 
Known Risk Factors
Significant signal enrichment was observed in genes 
expressed in pituitary gland and brain tissues, based on the 
multi-ancestry GWASs (see Table S9 in the online supple-
ment). Significant gene expression in brain was also observed 
in the EUR analysis (see Table S10 in the online supplement). 
Tissue-set enrichment analyses and corresponding GTEx 
gene expression heat maps for all of the multi- and ancestry 
admixture-specific GWASs are provided in Tables S9–S12 
and Figures S31–S34 in the online supplement.

Several GWS genes were identified in MAGMA analyses 
of the multi-ancestry and EUR meta-analyses (see Table S13 
in the online supplement; enrichment of SA signal with genes 
and gene sets across all meta-analyses are presented in 
Tables S13–S14 in the online supplement). MAGMA gene- 
based tests of the GWAS meta-analyses, with GWS results, 
are presented in Manhattan plots and QQ plots in Figures 
S27–S30 in the online supplement. EAS and AFR p-value 
thresholds for inclusion of GWAS variants in follow-up 
analysis were relaxed to p<1×10−5 and 1×10−6, respectively, 
in order to explore gene-based tests of top ancestry-specific 
GWAS variants. Top genes implicated in the EAS analysis 
included C11orf87, MYO1C, and FAXC, and top genes im-
plicated in the AFR analysis included CNTNAP2, IGF2R, 
MAN1B1, and SLC22A1. Neither set of genes was significantly 
associated with any pathway or tissue enrichment.

Gene-set analyses from the multi-ancestry and EUR 
GWAS identified 519 significant gene sets (31 and 488, re-
spectively), spanning multiple domains, including epige-
netics, gene regulation and transcription, cellular response to 
stress, DNA repair, and immunologic signatures (see Table 

FIGURE 1. Manhattan plot of multi-ancestry GWAS meta-analysis 
of suicide attempta
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a The x-axis shows genomic position and the y-axis shows statistical 
significance as –log10(p). The horizontal line shows the genome- 
wide significance threshold (p<5.0×10−8). Labels represent the 
nearest gene to the index SNP. Regional plots of the eight genome- 
wide significant loci across ancestry admixture populations and 
the four genome-wide significant loci in subjects of European an-
cestry admixtures are presented in Figures S3–S14 in the online 
supplement.
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S14 in the online supplement). The 31 multi-ancestry gene 
sets included schizophrenia and autism, containing 
protein-coding genes such as FURIN, FES, and DRD2, 
mapped from GWS loci. Most of the 488 EUR gene sets were 
due to overlap with a small group of 35 histone-coding genes.

Significant proportions of overlapping genes in GWAS 
Catalog (52) gene sets were observed for both multi-ancestry 
and EUR meta-analyses (see Figures S35–S36 in the online 
supplement). The 12 GWS loci from the multi-ancestry and 
EUR GWAS meta-analyses were tagged in several GWASs 
including cognition, smoking, insomnia, and risky behavior. 
Six of the 12 risk loci had p values <0.005 for the “Suicide or 
Other Intentional Self-Harm” analysis in FinnGen. A com-
prehensive list of results of SNP associations from the GWAS 
Catalog is presented in Table S15 in the online supplement. 
Examination of the phenome-wide association study re-
sults (p<0.005) across UK Biobank, FinnGen, and the 
GWAS Catalog resulted in the identification of several 
psychiatric, weight/BMI–related, and immune-related 
traits (see Table S16 in the online supplement).

Two loci implicated specific genes, FES and TIAF1, that 
were significantly associated with SA in SMR analyses and 
passed the HEIDI test. SMR results suggested that SA risk 
may be mediated by an increased expression of FES (pre-
viously implicated in cross-ancestry schizophrenia [53]) 
and decreased expression of TIAF1 in cortex (see Table S17 
in the online supplement).

Significant Overlap of SA GWS Loci and Targets of 
Antipsychotics and Antidepressants
Drug target enrichment results suggested that SA risk is most 
associated with the targets of antipsychotic and antide-
pressant drug classes. In the multi-ancestry gene-set analysis 
of the targets of drug classes defined by their ATC classes 
(45), there was significant enrichment in the targets of four 
drug classes: Antipsychotics and Psychoanaleptics, which 
includes individually significant Antidepressants and its 

subclass Other Antidepressants (see Table S18 in the online 
supplement). The class Other Antidepressants includes those 
not classified as selective serotonin reuptake inhibitors, 
monoamine oxidase inhibitors, or monoamine reuptake 
inhibitors.

In the EUR ancestry admixture GWAS analysis, there was 
significant enrichment in the targets of just three drug 
classes, including Antipsychotics, the broad class of Psy-
choleptics (drugs with a calming effect on behavior), and the 
class Cytotoxic Antibiotics and Related Substances (see Table 
S19 in the online supplement). Only one drug, the insecticide 
cyfluthrin, was significantly enriched when grouping genes 
targeted by individual drugs (from DGIdb v.2 and the Psy-
choactive Drug Screening Ki Database), and this was ob-
served only in the EUR GWAS results (see Tables S20 and 
S21 in the online supplement for multi-ancestry and EUR 
results).

Significant Genetic Correlation of SA With Known 
Nonpsychiatric Risk Factors Minimally Affected After 
Conditioning on MDD and PTSD
The out-of-sample polygenic risk analyses based on the new 
ISGC + MVP discovery GWAS meta-analysis statistics 
resulted in higher R2 estimates than were observed in 
previous ISGC analyses, particularly for the AFR cohorts, 
where the maximum variance explained (R2) was 0.66% 
(p=0.01), with a maximum increase of 146%, and EAS co-
horts, where R2 was 0.34% (p=8.1×10−6), with a 36% in-
crease. EUR maximum variance explained was 1.11% 
(p=6.2×10−22), a 24% increase from previous ISGC ana-
lyses (see Table S22 in the online supplement). Figure 2 
presents a forest plot of the genetic correlations of the EUR 
GWAS meta-analyses of suicide attempt with several 
physical and mental health phenotypes, as well as one 
control phenotype (BMI). Significant shared genetic co-
variation of EUR SA with smoking (rG=0.46, SE=0.03, 
p=8.06×10−63), attention deficit hyperactivity disorder 

TABLE 2. Results from meta-analyses of suicide attempt showing the index SNP from each genome-wide significant locusa

CHR Index SNP BP Locus Start..Stop
Nearest Gene 

(distance to index SNP in kb) p

Multi-ancestry
1 rs3791129 44480093 44,462,155..44,497,134 SLC6A9 (0.0) 1.22E−09
3 rs7649709 173129819 173,113,742..174,012,162 NLGN1 (0.0) 2.32E−08
6 rs62404522 19307114 19,068,774..19,180,711 LOC101928519 (−76.4) 1.68E−09
7 rs62474683 115020725 114,763,653..114,871,409 LINC01392 (−149.3) 8.72E−12
11 rs7131627 113299829 113,280,327..113,346,120 DRD2 (0.0) 6.2E−11
12 rs17485141 24213634 23,682,438..24,715,425 SOX5 (0.0) 1.54E−08
13 rs9525171 96908223 96,742,361..97,491,816 HS6ST3 (0.0) 8.07E−09
15 rs17514846 91416550 91,411,818..91,426,687 FURIN (0.0) 1.81E−09

EUR
1 rs2503185 66461401 66,258,193..66,840,262 PDE4B (0.0) 3.42E−08
6 rs35869525 26946687 29,640,168..30,152,231 (MHC) 2.18E−08
14 rs850261 57346423 57,278,724..57,398,026 OTX2-AS1 (0.0) 1.37E−08
22 rs2284000 37053338 36,956,904..37,099,797 CACNG2 (0.0) 1.98E−08

a A1=tested allele; A2=other allele; BP=GRCh37 base pair position; CHR=chromosome; EUR=European; kb=kilobases; MHC=major histocompatibility 
complex; NCohorts=number of cohorts included; NEff=total effective sample size; NTotal=total cases and controls; SNP=single-nucleotide polymorphism.
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(ADHD) (rG=0.55, SE=0.04, p=2.98×10−41), risk tolerance 
(rG=0.32, SE=0.02, p=1.34×10−59), and chronic pain 
(rG=0.45, SE=0.03, p=9.50×10−50) were observed both 
before and after conditioning on genetic risks for MDD and 
PTSD. Significant positive genetic correlations of neuroti-
cism, schizophrenia, bipolar disorder, and self-harm ideation 
with SA (rG=0.45, SE=0.03, p=1.0×10−52; rG=0.43, SE=

0.03, p=1.32×10−55; rG=0.48, SE=0.04, p=1.81×10−37; 
rG=0.83, SE=0.06, p=1.94×10−51) did not remain signifi-
cant after conditioning on both MDD and PTSD.

For completeness of comparison across cohorts and 
phenotypic subgroups (SA versus suicide death), genetic 
correlation estimates for phenotypes are presented in Table 
S23 in the online supplement using the European ancestry 
admixture GWAS summary statistics from 1) ISGC + MVP, 
2) ISGC only, 3) MVP only, 4) ISGC without suicide death, 5) 
ISGC suicide death only (the Utah Suicide Study; current 
N=4,692 EUR suicide deaths and 20,702 controls), and 6) 
conditioning on MDD and PTSD for MVP, ISGC, and MVP +
ISGC. LDSC jackknife tests of differences between these 
genetic correlation estimates are presented in Table S24 in 
the online supplement, and more exhaustive comparisons of 
phenome-wide rG and genetic causal proportion analyses, 
with the European admixture GWAS meta-analysis, are 
provided in Table S25 in the online supplement. Genetic 
causal proportion analyses implicated several nonpsychi-
atric genetic risks in EUR SA, including particulate air 
matter pollution exposure (PM2.5), smoking exposures, and 
pulmonary health factors. Risk factors with significant 
partial genetic causality estimates are presented in 
Table S25.

DISCUSSION

This study reflects the largest GWAS meta-analysis of SA to 
date, incorporating multiple ancestral admixture pop-
ulations and expanding the set of GWS loci from four to 12. 
Discovery of three of the novel GWS loci, and improved 

out-of-sample PRS prediction across ancestry, was only 
possible with the aggregation of all ancestral admixture 
cohorts. The results show, for the first time, that implicated 
genes are highly expressed in brain tissue, are enriched in 
pathways related to gene regulation and transcription, 
cellular response to stress, DNA repair, and immunologic 
signatures, and are shared with epidemiological risk fac-
tors. Genetic correlation and causal proportion analyses 
implicate a number of nonpsychiatric genetic risks in SA, 
including pulmonary health factors. We also provide im-
portant evidence that a significant proportion of the 
common variant genetic architecture of SA is shared across 
large civilian and veteran populations with disparate de-
mographic characteristics.

One advantage of combining the ISGC with MVP was the 
opportunity to examine genetic effects across heterogeneous 
cohorts. For example, the sample composition and ascer-
tainment across the ISGC is predominantly civilian and inter-
national, with a larger proportion of females (7). A number of 
the ISGC samples from the Psychiatric Genomics Consor-
tium cohorts (Table 1) are collected from individuals with 
major psychiatric disorders, representing a more clinical 
population. In contrast, the MVP cohorts are predominantly 
male (8), and all are military veterans ascertained through 
the U.S. Department of Veterans Affairs health care system. 
The consistency of SA common variant genetic architecture 
across EUR MVP and ISGC cohorts indicates that power may 
be further enhanced by combining future cohorts with 
differing ascertainments.

As expected, the increase in sample size, and the resulting 
increase in statistical power, led to the identification of 
several new GWS loci and improved out-of-sample PRS 
prediction, across ancestries, relative to the previous ISGC- 
only analyses. The loci identified in this study implicate 
genes expressed in brain. Genes associated with SA in this 
study are highly enriched among psychiatric phenotypes and 
overall health and wellness risk factors for SA. Brain is the 
predominant tissue enriched for associated genes, and there 

Odds Ratio SE A1 A2 Direction NCohorts NTotal NEff

1.055 0.009 G A +-+++++--+-+?+++?+??++ 18 933,136 158,078
1.054 0.010 A C ++++++-+++-+?++-++++++ 21 954,890 164,921
1.067 0.011 C T +--+++--++++-++-+-++++ 22 956,659 166,924
1.054 0.008 A G +-++++-++++++++-++-+++ 22 958,896 167,455
1.053 0.008 G A +++++--+++++++++?-++++ 21 944,101 164,620
1.049 0.009 C T +++-++++++++-+++++++++ 22 958,896 167,455
1.044 0.008 C G +-+++++--+-+-+++++-+++ 22 958,896 167,455
1.048 0.008 C A ++++++++++-+-+++?+?+++ 20 938,959 162,145

1.047 0.008 A G ++++++---+++-++ 15 815,178 136,860
1.089 0.015 C T +?-+-+++-++++++ 14 803,626 134,461
1.049 0.008 A G ++-+-++++++++++ 15 815,178 136,860
1.055 0.010 C G ++++++-+-+-+?++ 14 812,886 135,108

Am J Psychiatry 180:10, October 2023 ajp.psychiatryonline.org 731

DOCHERTY ET AL. 

https://ajp.psychiatryonline.org/doi/suppl/10.1176/appi.ajp.21121266/suppl_file/appi.ajp.21121266.ds001.pdf
https://ajp.psychiatryonline.org/doi/suppl/10.1176/appi.ajp.21121266/suppl_file/appi.ajp.21121266.ds001.pdf
https://ajp.psychiatryonline.org/doi/suppl/10.1176/appi.ajp.21121266/suppl_file/appi.ajp.21121266.ds001.pdf
http://ajp.psychiatryonline.org


is also significant enrichment in pituitary gland, consistent 
with previous association of SA with hypothalamic-pituitary- 
adrenal system dysregulation (54). In addition, the en-
richment of pathways related to epigenetics and gene 
regulation and transcription suggest that epigenetic modi-
fications, such as DNA methylation, may play a role in 
modulating the effect of SA-associated genetic variants. 
However, epigenetic pathways were only enriched in 
GWASs of European ancestry admixtures, pointing to the 
potential importance and varied impact of epigenetic 
mechanisms in diverse biological systems that may con-
tribute to SA risk. Pathways enriched in the multi-ancestry 
GWAS were absent of histone-coding genes and contained 
protein-coding genes mapped from GWS loci such as FURIN, 
FES, and DRD2. These multi-ancestry pathway results, while 
more difficult to interpret, may be more generalizable to the 
global population.

Drug target enrichment results suggest that SA risk is 
associated with the targets of antipsychotic and antide-
pressant drug classes. One explanation may be that psy-
chiatric symptoms associated with SA risk are also associated 

with these drug targets, al-
though the direction of any 
association of drugs with risk 
cannot be assumed and was 
not directly tested here. The 
SMR analysis of EUR results 
implicated FES and TIAF1 in 
SA. FES has previously been 
implicated in cross-ancestry 
schizophrenia (53).

Genetic correlations of SA 
with ADHD, smoking, pain, 
and risk tolerance remained 
significant after conditioning 
SA on both MDD and PTSD, 
while those for schizophre-
nia, bipolar disorder, and 
neuroticism did not. This 
suggests a potential role for 
health factors in SA risk that 
are both shared with and 
distinct from psychiatric 
disorders, as proposed in 
Mann and Rizk’s stress- 
diathesis model (55) of sui-
cidal behavior based on 
clinical and biological stud-
ies. The suicide diathesis 
includes altered decision 
making that may be more 
pronounced in the context of 
ADHD and smoking, and 
may be aggravated by sleep 
problems. Pain is associated 
with the stress domain of 

suicidal behavior, and is also associated with increased ac-
cess to prescription opioids. Overall, this study leverages 
genetic data to examine important risk phenotypes that may 
or may not be present in medical records.

Some limitations of this study should be considered. First, 
a meta-analysis of such a large number of diverse cohorts, 
with different assessments of SA, could reduce statistical 
power by increasing heterogeneity. Our analyses remain still 
more conservative with the inclusion of age and sex cova-
riates in three of the ISGC cohorts and MVP. However, 
GWASs of the primary data sets typically produced sig-
nificant—and high—genetic correlation estimates. GWS loci 
produced similar effect sizes across cohorts and across fixed 
and meta-regression models (correlations of EUR and multi- 
ancestry GWS effect sizes across models exceeded 0.99). 
Indeed, the apparent consistency of genetic architecture 
across EUR ISGC and MVP cohorts is important given 
marked demographic and ascertainment differences.

This study also provides GWAS meta-analyses specific to 
African and East Asian ancestry admixtures. The lack of 
GWS loci specific to these SA meta-analyses underscores a 

FIGURE 2. Forest plot of genetic correlations of the multi-ancestry GWAS meta-analyses of suicide 
attempt with physical and mental health phenotypesa
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a The x-axis presents genetic correlation values with 95% confidence intervals, and the y-axis presents the 
discovery GWAS for multiple phenotypes. ISGC=International Suicide Genetics Consortium meta-analysis; 
ISGC + MVP=the primary meta-analysis including GWASs from both ISGC and Million Veteran Program sets of 
cohorts; ISGC + MVP | MDD and PTSD=the combined GWAS meta-analysis of both cohorts conditioning on 
major depressive disorder and posttraumatic stress disorder.
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strong need for greater ancestral diversity and representa-
tion in suicide genetics research. With high variability of 
sample sizes of individual ISGC and MVP ancestral cohorts 
(case Ns ranging from 115 to 9,196), some GWASs yielded h2 

and rG estimates, while others did not. Variability in rG in-
dicates that increasing the examination of non-European 
ancestry admixtures in the future will significantly increase 
the generalizability of the genetic risk signals identified from 
studies of suicide phenotypes and the portability of polygenic 
scores. Importantly, broader ancestral representation, par-
ticularly from population-dense areas such as India, West 
Asia, and the Global South, will be critical for improving the 
rigor and generalizability of GWAS results in future 
research.

Implicated genes and established genetic relationships 
with ADHD, smoking, and risk tolerance help to inform our 
understanding of biological contributions to risk of SA. From 
a clinical standpoint, impulsivity, smoking status, and risk- 
taking behaviors are intuitive comorbid indicators of suicide 
risk. Genetic causal proportion analyses implicate these and 
other health factors—pulmonary and cardiovascular—in risk 
for SA. And our preliminary comparison of genetic corre-
lations across SA versus suicide death GWAS cohorts ap-
pears to implicate risk tolerance in the severity of the suicide 
phenotype. Further study comparing suicide death and SA 
with individuals with suicidal ideation will allow for a 
comparison of those who think about suicide and those 
who act. Importantly, genetic risk for SA, calculated in 
new independent cohorts using these GWAS summary 
data, will contribute to a deeper understanding of the 
clinical implications of genetic risk for suicide. The future 
addition of multiple ancestral cohorts is likely to yield 
continued discovery and increased opportunity for clin-
ical translation.
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